JOURNAL OF COMPUTATIONAL PHYSICS 107, 378-387 (1993)

A Fast Algorithm to Compute the Wave-Scattering
Solution of a Large Strip*

W.C.CHEw ann C. C. Lu

Flectrmmagnetics Laboratary, Department of Electrical and Computer Engineering, University of lilinols, Urbana, lilinois 61801

Received August 7, 1991, revised May 28, 1992

A truncated, nonuniform, finite array of strips does not have a closed
form solution. Using translational symmetry, a recursive algorithm that
calculates the scattering solution with N log? & computational com-
plexity is described. First, the algorithm is validated with the method of
moments for bath the TM-to-z and TE-to-z polarizations. Then the
scattoring sotulion from a large strip is éalculated for both TE and TM
polasizations. The current distribution for the TE polarization shows
small-length-scale oscillations not present in the TM polarization.
€ 1993 Academic Press, Ing.

1. INTRODUCTION

The scattering of waves by large objects and structures
is important in a number of applications. Such scattering
solutions could be used for computer-aided engineering.
However, the computer solution of large structures con-
sumes exorbitant amounts of computer time and computer
memaory. Recently, it has been demonstrated that algo-
rithms for scattering solutions with reduced computational
complexity can be derived using a recursive structure
f1-10]. The reason for the reduction in computational
complexity has been traced to the use of addition theorems
or traaslational matrices which are used te change the
coordinates of the wave functions describing the scattered
field. The translation matrices are the representation of the
transiation group [!1, 12]. Hence, the product of two
translation matrices is still a translation matrix exhibiting
the closure property of a group,

In the addition theorem for cylindrical harmonics, the
basis for the representation of the translation group is the
Bessel function. However, since the translation group is
Abelian, a simpler group representation is possible [ 12]. If
plane waves are used as a basis for the translation group,
a simple representation results. In this paper, we shall
demonstrate the use of a plane-wave basis for the expansion
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of the scattered field by a {inite, nonuniforin array of strips.
This is equivatent to the use of plane waves as a basis for the
representation of the translation group, which reduces the
translation matrices to diagonal matrices which are easy lo
compule. Eventually, it lcads to an algorithm with a com-
putational complexity of O(N tog? N} which is much flaster
than any other method to solve this scattering problem.

The problem of wave scattering by strips, other than
being a canonical problem, has many practical applications.
Hence, it has been investigated by many workers {13-16].
However, due to the high complexity of the previous
methods to solve this problem, only relatively smaller-size
problems have currently been solved. The algorithm
described here will have two advantages: First, it can solve
for the scattering solution from any array of coplanar strips
regardless of the nonuniformity of the array. Second, it has
a reduced computational complexity compared to previous
methods of solving this problem. The limitation at this point
is its application only to a coplanar array of paraflel strips.
Hopefully, future research work will lift this restriction.
Also, with a slight modification, the present formulation can
be extended to that for an array of resistive strips.

In the following, we will first describe the plane-wave
representation of the two-dimensional Green’s function.
Then, using the point-matching technique, the scattering
solution from one single substrip is described. Later, a
forward recursive algorithm and a backward recursive algo-
rithm arc given that yicld the solution of scattering by ¥
substrips. Then the computational complexity and memory
requirement of the algorithm is analyzed. Finally, the
algorithm is validated with the method of moments and
tested with some numerical simuiations of large strips.

2. PLANE-WAYE EXPANSION OF THE
GREEN'S FUNCTION

Given an array of strips, it can be decomposed into N
substrips; the width of each substrip is much smaller than a
wavclength, Hence, the problem of scattering by an array of
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FIG. 1. Geometrical configuration of wave scattering by a finite,
nenuniform array of strips.

strips is reduced to the problem of scattering by N substrips,
some of which are touching and some of which are not
touching. Hence, the geometry of the scattering problem is
shown in Fig. 1. It consists of N parallel and coplanar
conducting substrips, each of which has a width of w,. For
simplicity, we shall omit the subscript j in the subsequent
discussion, The center of each substrip is denoted by x =d,
fori=1, .., N, and N is the total number of substrips.
First, we shall study wave scattering by a single substrip
when illaminated by an incident wave. For instance, in the
TM-to-z case where the geometry is z invariant, the incident
field is characterized by the z component of the electric field
which is E7. If the induced current on the strip is J,, which
is also z invariant, then the scattered field can be derived as

w2
Golp —p') J.(x") dx,

Ei=iop |
— w2

(1)

where p=ix+ jy. Here, Go(p—p')=(i/4)H(k|p—p'])
is the free-space Green’s function in two dimensions [17],
and H {!'(x) is the zeroth-order Hankel function of the first
kind. Here ¢ ™" time dependence is assumed.

The Hankel function can be expanded as a spectral
integral as [5, p. 59] ’

1 pee 1 . e .
(1) Y= — eo(x = x"}+ eyl y — )
Hy'(kp—pD) TJ dk e .

—0 v

(2)

where k,=./k?— k7, and an appropriate branch of the
square root is chosen in the above integral to satisfy
the radiation condition [5]. When x—x" is large, the
oscillatory nature of the integrand makes the evaluation of
the integral difficult. To overcome this problem, the path of
integration is deformed to the steepest descent path. For
coplanar strips, without loss of generality, we can assume
y =y =0. Hence, the steepest descent path is just the verti-
cal branch cut as shown in Fig. 2 [18]. When x > x', the
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FIG. 2. Deformation of the Fourier inversion contour to the vertical
branch cut. The vertical branch cut in this case is also the steepest descent
path.

integration path can be deformed to #_ and b, so that
after combining the integration over »_ and b, we have

+ oo
(ko= x) =1 | T dsfis) e, (3)
0

where

2

T R

(3a)

The above is a function of |x — x’| because the resuit must
be an even function of |x— x’'{. Now, the above integral
converges exponentially fast as a result of the exponential
decay of the integrand for increasing s.

When |x—x'| > oo, most of the contribution to the
integral will come from values of s < 1/|x — x'|. Moreover,
the above could be approximated by a discrete summation
using, e.g., trapezoidal integration or Gaussian quadrature
rule. Hence,

M
Hg)ll(k | x —x"| ) ~ z hme—umlx—x'|’

m=1

(4)

where

U, = —ik+3,

and k,, is the appropriately weighted value of the integrand
ats,,.

The sampling points in approximating the integral (2)
need not be evenly distributed. The sampling intervals can
be distributed with the finest sampling points close to s=0
and increasingly coarser sampling points when s— co.
For instance, one can let s,=uas,, s;=as,_,, so that
Sp=0a%"1s, wherea>1.
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FIG. 3. The increase in the number of sampling points with the
maximum dimension of the array on a semilog plot.

The grid points have to be chosen so that (4) is valid for
a range of values of |x — x'|. The integrand is discretized
over the interval [0, s,,], where 5, is determined by the
largest value of |x — x’| and s, is determined by the smallest
vaiue of |x— x’|. In other words, s, =¢,/|x — x| nax, and
Spr=Cp{1X = X | i Hence, sy,/51 ~ X — X' mux /1% — X'| min-
Since s, /s, =71, we have M~In{|x—x| .} —
In{ix—x'| .} Since |x—x'|,,=w, the number of
sampling points M needed to approximate the integral is
proportional to log{|x — x| ., - Figure 3 shows a semilog
plot of the increase in the number of sampling points as a
function of the maximum size of the array of strips to
maintain the same accuracy in the integration. It is seen that
M is proportional to In(kW), where W is the maximum
width of the array.

In Eqg. (4), we have an efficient representation of the
Green's function of the problem in terms of a plane-wave
basis which has translational symmetry. This translational
symmetry can then be later exploited to derive a recursive
algorithm with reduced computational complexity.

3. T MATRIX FOR A SINGLE STRIP

Even though T matrices have been defined when cylindri-
cal wave harmonics or spherical wave harmonics are used as
a basis [19, 207, the definition can be extended to the case
when the basis is a plane wave.

3.1. TM case

For TM-to-z fields with a z-invariant geometry, the
etectric field is z polarized and the induced current on the
strip is z directed. Consider a single substrip, centered at
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x =0, and whose dimension kw is smalil so that the induced
current J. on it can be approximated by a constant. Then
the scattered field is

El(x)=——= oul,

z

wi2
j HNk | x~x)dx  (5)
—w/2

on the y =0 plane. Substituting the approximation (4) into
{5), we have for [x| > w/2, that

M
EAx)=J, T bpe o =yl(x)-bJ.,

(6)
=1
where
_ _wp' wiz X’ :
b=t h, wa/ze dx’, (6a)
b=[b13b2s'"e bM]ls (6b)
and

W, (x)=[eFar, et L eTumr] (6c)

The subscript + indicates the scattered fields to the right
and to the left of the substrip, respectively. This sign will be
dropped if there is no ambiguity, e.g., in the case when the
scattered field is an even symmetric function of x.

Hence, the scattered field of a substrip is expanded in
terms of a plane-wave basis on the y =0 plane. When many
substrips are present, these plane waves given in (6), plus
the plane wave from an external source can be considered
the incident field on a substrip. Hence, the incident wave on
a substrip can be expanded in terms of the basis

e and et"", m=12,.,M, (7
where £, is the x component of the incident wave k-vector.
Therefore, it is reasonable to assume an incident wave
vector of the form

wit(x)= [efk,-,x’ eiulx’ eiuzx, o eiqu]r_ (8)
The subscript + indicates a wave incident from the right
and left, respectively. It will be dropped if the scattering
property of the strip is independent of the direction of the
incident wave. Consequently, the incident field impinging
on a substrip can be written as w(x)-a without loss of
generality.

Imposing the boundary condition by point matching
[21] at x =0, the center of the substrip, we have

wid
Lo HOE ) d = i)
/2

—w

(9)
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Consequently, J. could be solved for and substituted into
(6} to yield

Ex)=vi(x) b -a=yi(x) T-a,  (10)
where
“=F%fm waun]lwum (102)
o
and
T =bf". (10b)

The above gives the T matrix that relates the scattered
ficld amplitudes to the incident field amplitudes for a
TM-polarized incident field on a single substrip.

32. TE Case

In this polarization, the electric field is polarized in the xy
plane. The induced current on the strip is in the x direction.
Hence, the current cannot be assumed constant anymore on
each substrip. In this case, we choose a trapezoidal function
as a basis for each substrip. As a result, the charge distribu-
tion on the substrip will consist of a pulse function plus
two delta functions as shown in Fig. 4. From Maxwell’s
cquation, the scattered field consists of two terms, one

A4,
I 12
- X
w2 o] w/2
boo
dx
4
- X
(o]
Y

FIG. 4. The current and charge distributions ( ~ &7, /dx) on a subtrip
for the TE-polarized incident wave.
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resulting from the current on the substrip while the other is
from the charge. In other words,

w2
Ei=iop| 1. Golp—p')dx

iwp @ e

K Bx iwp, Golp—p’) dx’, (11)

where J, is the x component of the surface current on the
substrip while p,= (1/iw)(dJ, /dx) is the surface charge
density on the substrip.

By letting J.,=3%72_, I,t;(x), where 7,(x) is a half-
triangular function at —w/2, and #,{x) is the mirror image
of 1,(x), Eq. (11) at y = y' =0 can be expressed as

E(x)=1C\(x)+ ,C,(x), (12)
where
. w”‘z r ’ ! 1 a w”z
cxw=mw[jw;xxu%u—x)¢x+P5;Lw2
3
x (—, rj(x')) Golx—x') dx’:|. (12a)
ox

When the approximation (4) for the Green’s function is
substituted into (12), we can show that

Ex) =yl () -BELL x> w2,

(13)

where I is a two-component column vector containing I,
and I,, and b is a M x 2 matrix. The superscript + is used
in b'*? because its values for the left-going and the right-
going scattered fields are different due to the asymmetry in
the basis functions.

The incident wave impinging on the strip could be from
the right or from the left, which can be written as E'(x) =
w{,{x)-a. To point match on the surface of the strip, we
have to use Eq. (12) for E°. The resultant point-matched
equation can be expressed as

2

Ei(xj)= Z IiCi(xj)= *E;(xj); (14)
i=1
where Xy = —b, x; = +b are match points on the substrip.
Since £ = !, (x}-a, the above is of the form
2
Z Cji1i=—w:i('xj)'aa j=1329 (15}
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where, C;;= C,(x;). The above could be solved to yield
I=—C“-l:w;i(xl)]-a=f'(t)'ﬂv (16)
‘l’fi(xz)

Note that I is dependent on the direction of the incident
field. Using (16) in (13), we have

T 2) .4

Ex) =y (x) BEFH a=y' (x). T (17)

The double superscripts on the T matrix indicate that it is
sensitive to the directions of both the incident and the
scattered fields.

4. THE FORWARD RECURSIVE ALGORITHM

Given the scattering solution of each substrip, a recursive
algorithm can be derived such that the (# + 1)-substrip solu-
tion can be found from the n-substrip solution [4, 57. In this
manner, the N-substrip solution could be recursively
constructed from the one-substrip solution.

When n substrips are present, the total field could be
written as

incident scattered

Blx, y=0)= i (xg) A+ W' (%g) Ton 2  (18)

where x, is the x coordinate with respect to a global or
zeroth coordinate system. The above expression is only
valid for x; to the right of the n substrips, since the scattered
field is travelling to the right and the incident field is coming
from the right. Since the # substrips may not have reflection
symmetry, the scattered field to the right may not be the
same as the scattered field to the left for the same incident
field. Also, its response to the incident field from the right
may not be the same as to that from the left. Hence, there
are four possible combinations of the incident directions
and observation directions.

When the (#+ 1)th substrip is added to the right of the »
substrips, the total field could be written as

S, y=0)=wyi, (xp) - a+wyi (x) T

I & ES) .
+‘Ps;+;(xn+l)'Kn+1(n+l) a.

nin+ 1y "4

(19)

The subscript + on ! is used in the last term to indicate
that the model expansion is valid both to the right and to
the left of the (n -+ 1)th substrip. The superscript (+) on K
indicates its dependence on the two possible incident field
directions.

The translation matrix similar to Ref [1-6] could be
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used to express the scattered wave of the last term in (19) in
terms of the zeroth coordinates yielding

¢(x y= 0) ‘4’,+(Xo) a+"|’s+(x0)

+l|l,-+(x0) Wyna 'Kn_-i-l(n-+-i) -

Thins1)-A

(20)

In the above, note that the third term has the same form
{except for a different amplitude) as the first term—the inci-
dent wave from outside the strip array. In fact, the third
term can be thought of as an incident wave, due to a wave
scattered off the (# + 1)th substrip, on the n-substrip array.
Consequently, regarding the first and the third terms as the
incident field on the » substrips, and the second term as the
scattered field from the n substrips, we have the relationship

Tn(n+1J=1(n)'[i+&0,n+l 'KL:)l(n+1)]’ (21)
where T, , |, is the aggregate T matrix for the n substrips in
the presence of the n + 1 substrips.

Similarly, by shifting the coordinates of the first two
terms in (19) to the coordinates of the (n + 1)th substrip, we
have

‘P;+(xn+l)'Bn+1,0'a+q’f{—(xn+'l)
'a'n+l,0'fn(n+1]'a+w;i{xn+l)

K=

)
H+ 1{mr+ 1) ‘4.

d(x, y=0)=

(22)

Now, the first two terms in (22) resemble the incident wave
impinging on the (# + 1}th substrip. Hence, the third term,
which is the scattered field from a single substrip, can be
related to the first two terms via the isolated-scatterer T
matrix derived in (10} and (17). In this case, the incident
fields on the (n+ 1)th substrip are coming from both the
right and the left sides. Hence, we deduce the relationship
K=+

a4+ Hn+1)

=Tt +)

) n+10+Tn+l(1] Gy y10 Tupns 1o

(23)

However, note that the T-matrix solution derived in (10) is
independent of the directions of the incident wave. There-
fore, the + sign may be removed for TM polarization.
Solving (21) and (23) for K!{7} ) yields
Kr(7+1{r!+l'_ [I

r!+1(1) Wy i0 Tomy o ng ]!

x [T! +1(1) ﬂn+10+Tn+1m @0 Tl
(24}

Using the property (10b) that T{%-%) =b{2)fi£) | the
above could be simplified to

(—) -
Kn+l(n+l) bn+lfn+l(n+l)’

(25)
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where
2x2

—(1

Mx{M+1) (M+1)xM Mx2

——n, g, ——

i —1
' bn+ 1)
+ f(n_+)l(1)

Ix(M+1)

(25a)

Zx{M+1) (M+1)x M
——e

¥ =) o
fn+1(n+i) - fn+1(1) 040

1_:(n) S T

i+ _

) [fn+)i(1] ' Bn+l.0
e T
Zx(M+1) (M+1)x(M+1)

i(n] ]

e

LR

e
(M+1xM Mx(M-+1)

Note that the number of columns in b and f are one for the
TM case and two for the TE case. Hence, in {25a), the order
of the matrix to be inverted is at most 2 x 2.

Once K7, 1, 1s known, T, , ,,can be found from (21).
An aggrepate T matrix [4] could be defined for (n41)
substrips as

im+1)='_l7n(n+1)"'ﬁc:),nJrl 'Kn+lln+l)

= i ry
S PP R ST

Mx(M+1) (M+1)xM Mx2 2x(M+1)

(26}

= Tm T T

M < (AM+1)

R h 4
+ﬂ0,n+l 'bn+l fn+llfn+l]'
———— o

MxM Mx2 2x(M+1)

The dimensions of the matrices arc shown by over- and
under-braces in (25a) and (26) for the TE case.

In the above, assuming that the jth substrip is always to
the right of the zeroth coordinate system, then,

lk.rc{.n u1d,o
L .-

d
S €M ety (278)

[‘ljo =diag|e

Bo, = diag[e® e, e240, ., (27b)

uprdjn
4 / ]MxM’

_ Ol x M
diag(e “tdo, ¢ —ade,

—uadig :I ’
s € Y agxm A a4 1y xmr

(27¢)

Note that the translation matrices are diagonal or
quasidiagonal because of the Abelian property of the
translation group.

When the strip becomes very wide, it is expedient to shift
the origin of the zeroth coordinate system to the center of
the nth substrip. This will avoid the cancellation of
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exponentiaily large and exponentially small numbers in the
recursive method.

5. BACKWARD RECURSION FORMULAS

In order to derive the current distribution on the strip,
backward recursion formulas similar to those in [4] need to
be derived. In this case, it is more pertinent to write the total
field after forward recursion as

N

p=vi, (xo)-a+ Y wi_(x}-Ki3)-a,

i=1

(28)

where the scattered field from each substrip is expressed
in its self-coordinates. Using K{7), j=1,.., N, from the
forward recursion, we can derive backward recursion

formulas for K{,} as in [4]. They are

Ty =on K2 (29a)
K[_—’r(N] ]—(f'\’——-]i(N—j]'[i-i_':r(i—l)]:
i=1,.,N—1, (29b)
% %(r—1]+00N i KS\T,);(N,,
i=1,.,N—-1 (29¢)

Using (29a) as the initial condition, and the value of K¢
Jj=1,... N, the above allows one to find K{;}, i=1,.

With Kf(;,‘) known, the current distribution on the stnps
could be found. Once the current distribution is known, the

field could be easily found, e.g., by the FFT method. The

J(J) ’

‘computational cost and memory requirement of the above

formulas can be reduced by using the form (25) for K{,}.

6. COMPUTATIONAL COMPLEXITY

It can be seen from Egs. (25) and (26) that at each
recursive step, O(M?) multiplications are needed to find
ft1meny and T, . After N recursive steps, the total
number of floating point operation is O(NM?). Since
M o In kd, where d is the largest dimension of the array,
and kd ~ N, we have M ~ In N. Consequently, the computa-
tional complexity of this algorithm is O(N log® N). The
memory requirement can be shown to be O(Nlog N). The
above analysis is for one incident plane wave. If & incident
plane waves are assumed, an analysis of the computational
complexity yields O(N* log N). The memory requirement is
O(N?). This algorithm is of reduced computational com-
plexity compared to the method of moments, conjugate
gradient, or conjugate gradient FFT methods applied to
this problem [22-25].
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FIG. 5. A single kW =6 strip illuminated by a TM plane wave incident at 45° and comparison with the method of moments: (a} The current

distribution on the strip. (b) The scattered far field.

7. NUMERICAL RESULTS

In the following results, the TE simulations are performed
with about 40 substrips per wavelength while the TM
simulations are performed with about 20 substrips per
wavelength in order to obtain good current distributions on
the strips. If only far fields are needed, sampling rates can be
reduced by a factor of two. All substrips are assumed to be
of the same width w. The current distributions are nor-
malized by the factor 4 jH|/(kw) for the TM case and 4 |H|
for the TE case. All computations are performed on a SUN
4/110, The scattered far field for the TM case is normalized
by the factor ./2np, while for the TE case it is normalized
by the factor ./8mpd/W, where W is the width of the strip.

0.32
a 0.3 T
028
026 |
024 |
022 |

EW =157 8}
mmmﬂ'u'(m

L —Metbod of Moments
0.2 ©Rectrsive Method

0.18
0.16
0.14
0.12

Current Magnitude

X/

Figure 5a shows the current distribution on a single strip
whose width is such that kW = 6. The strip is illuminated by
a TE plane wave at 45°. The comparison with the method
of moments on the current distribution shows good agree-
ment. Figure 5b shows the calculated scattered far_field
displaying good agreement with the method of moments,

Figure 6a shows the calculated current distribution on a
strip illuminated by a TM plane wave at normal incidence
with kW = 15.7. It shows good agreement with the method
of moments, Figure 6b shows the corresponding calculated
scattered far field showing good agreement with the method
of moments.

Figure 7a shows the current distribution on a 20
wavelength wide strip illuminated by a normally incident

ORecursive Method
—Method of Moments

F XW=1s7Smp
0 | T tecdence : gy

Scattered Field (dB)

40 60 80 100 120 140 160 180
¢

25 Lot
0 20

FIG. 6. A single kW = 15.7 strip illuminated by a TE plane wave at normal incidence, and comparison with the method of moments: (2) The current

distribution on the strip. {b) The scattered far field.
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FIG. 7. The current distribution on: (a) a 20-wavelength wide strip illuminated by a normally incident TE plane wave; (b) a 25-wavelength strip

illuminated by a TE plane wave at 45° incidence.

TE plane wave.! The current distribution has a small-
length-scale variation on the order of a wavelength.
Figure 7b shows the current distribution on a 25-
wavelength strip illuminated by a 45° incident, TE plane
wave. A small-scale variation on top of the large-scale varia-
tion is observed. The small-length-scale variation is due to
the interference of the surface waves on the strip which
bounce between the two edges of the strip. As is well known,
for such a polarization, an edge-diffracted field will launch
a surface wave along the strip [26]. The large-scale varia-
tion is due to the interference between the surface wave and
the incident wave. In other words, the current distribution
is approximately a lincar superposition of three terms:
6%+ cye™ % 4 6™, The first two terms are due to
surface waves bouncing between the two edges of the strip
while the third term is induced by the incident wave or the
physical-optics approximated current. Such interference
phenomenon is not pronounced for strips illuminated by a
TM polarized wave. _

Figure 8 shows the current distribution on a 100-
wavelength wide strip illuminated by a TE plane wave. The
angle ¢, of this figure is 30°. Two length-scale variations are
again observed, one at about 10-wavelength length scale
and the other at one wavelength length scale. The small-
scale variation is due to the interference of the surface wave
as observed in the 20-wavelength example. The large-scale
variation is due to the interference of the edge-diffracted
field and the incident field.

Figure 9 shows the current distribution on a 160
wavelength wide strip illuminated by a TM plane wave at
45° incidence. Except near the edge, the current distribution
is similar to that from physical-optics approximation. When

' This current distribution has been validated by S. K. Jeng inde-
pendently with his method-of-moments code.

the current near the edge is enlarged, it has an interference
pattern resembling that of Fig. 6a. A metallic surface does
not support well a TM-to-z surface wave since E, has to be
zero on the surface. Hence, the edge-diffracted field is only
localized near the edge causing some interference fringes.
Figure 10 shows the growth of the CPU time on a SUN
4/110 versus the number of unknowns. The reduced com-
putational complexity is clear from such a plot. Due to the
reduced computational complexity and memory require-
ment, we can solve a 600-wavelength wide strip problem on
a SUN 4/110 {~1MFLOP, 8 MByteRAM) with 6000
unknowns in about 21 min for one incident wave direction.
Even though the examples illustrated here are wide strips
whose substrips are continuous, the algorithm has alse been
used to compute the scattering solutions for an array of
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FIG. 8. The current distribution on a 100-wavelength wide strip
illuminated by a TE plane wave with ¢,=30°in Fig. 1.
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FIG. 9. The current distribution on a 160-wavelength wide strip
illuminaied by a TM plane wave at 45° incidence.

strips showing good agreement with the method of
moments. :

8. CONCLUSIONS

A method to calculate the scattering solutions of a wide
strip or a wide array of strips is described. This method
yields an accurate solution within numerical approxima-
tions, and all interactions between the substrips are
accounted for. The algorithm has N log? N complexity for
one incident angle and N?log N complexity for N incident
angles, with memory requirements of Nlog N and N3,
respectively, for the above two cases.

100
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—Recursive Method
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T
E 0t
=
2
O
1 ‘
10 100
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FIG. 10. Comparison of the CPU time on a SUN 4/110 versus the
number of unknowns on a log—log scale.

CHEW AND LU

The method has been validated with the method of
moments for small strips. An interesting surface-wave inter-
ference phenomenon of the current distribution for TE
polarization is observed which persists even for very large
strips. This renders the physical-optics approximated
current inaccurate, However, for TM polarization, this
interference pattern is absent except near the edge of the
strip. Hence, the physical-optics approximation is a decent
one for TM polarized waves.

Even though our sampling rate for the current on the
strip seems to be higher than that required for the method
of moments, future research on a better choice of basis may
reduce this sampling rate. However, because of the reduced
complexity, the fast algorithm solves for the solution much
faster than the method of moments even for one- or
two-wavelength wide strips.

This work can be generalized to the case of an array of
strips on a dielectric slab. We hope that future work will lift
the restriction on the coplanar arrangement of the strips.
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